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Abstract. The helicity modulus (superfluid density) is evaluated for spin systems in the 
magnon regime and for an interacting Bose fluid in the Bogoliubov approximation. The 
quantal X Y  model and the Bose system each yield the same temperature dependence for 
the helicity modulus; the behaviour is distinct from that of the square of the order 
parameter. 

1. Introduction 

In systems with continuous symmetry suitable wall potentials or boundary conditions 
can induce in the ordered phase a ‘twist’ in which the order parameter W ( x )  has a 
direction which varies in a continuous manner from one end of the system to the 
other. Such a situation corresponds to a state of superflow in a superfluid or to a Bloch 
wall in an isotropic magnet. The helicity modulus Y ( T ) ,  as discussed in detail by 
Fisher et a1 (1973), is a measure of the response of the system to a ‘phase twisting’ 
field; in a superfluid the helicity modulus is simply related to the superfluid density 
according to p, (T)  = (m/h)2Y(T).  

As noted by Fisher et a1 (1973), the helicity modulus can be calculated (at least in 
principle) within the framework of equilibrium statistical mechanics. One must, 
however, be prepared to go beyond the bulk properties in the same sense as in a 
computation of surface properties such as the surface tension. One operational 
definition of the helicity modulus that has been successfully applied to the Berlin-Kac 
(1952) spherical model (Barber and Fisher 1973) and to the ideal Bose gas (Barber 
1977) involves equilibrium free energy calculations under periodic (T = 0) and 
antiperiodic (T = f ) boundary conditions: 

Here F‘ is the free energy per unit volume of a system infinite in (d - 1) dimensions 
and of length L in the final dimension. (In ordinary space one imagines circular disc 
geometry with radius R + 00 before the height L.) The two free energy densities differ 
by O(L-’) when helicity effects are present. 

In each of the cases mentioned the helicity modulus can be calculated exactly and 
one finds for all T < T, 

(spherical model) 
(ideal Bose gas) 
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(Barber and Fisher 1973, Barber 1977), where Mo(T) is the spontaneous magnetisa- 
tion and no(T) is the condensate density. In each of these cases Y is proportional to 
(q0(T))*, the square of the spontaneous order; for the Bose gas one in fact has 
ps = mno(T). This proportionality is special to these related simple models. 

An alternative operational definition has been used by Rudnick and Jasnow (1977) 
to show that the Josephson (1966) relation is exact within the renormalisation group 
framework. Using a combination of phenomenological and scaling ideas Josephson 
suggested that as AT = T - TC+ 0 -, the helicity modulus (superfluid density) behaves 
as Y(T)- IAT128-'"', which is in general distinct from (Q0(T))' - /ATI2@. Boundary 
conditions on the basic variables are difficult to include within usual renormalisation 
group approaches, so Rudnick and Jasnow imagined that the boundary conditions 
induce a long-wavelength twist of wavenumber ko in the order parameter. The 
thermodynamic limit is to be taken first, and then the helicity modulus becomes 

Y(T)= [d2F(T; ko)/dk;],=o, (1.3) 

where F ( T ;  ko)  is the free energy density associated with such an ordered state. 
In this paper we apply the general procedure embodied in (1.3) to the X Y  model 

in the magnon regime and to the Bogoliubov model for an interacting Bose fluid. One 
finds for both of these models Y(T) = A  - BTd+' + . . . (d > 2), which temperature 
dependence is in agreement with the phenomenological prediction of Landau (1941, 
1947). Such temperature dependence is distinct from that of the order parameter 
which is well known to behave for these models as (q0(T))* - C - DTd? The results 
are consistent with the use of the X U  model as a lattice model for a Bose fluid (see, 
e.g., Fisher 1967). Our results for the Bogoliubov model are in agreement with those 
of Kehr (1967) who uses a formalism specifically designed for a Bose fluid. We 
include also results for the ideal Bose gas which shows that the definition (1.3) yields 
precise agreement with the work of Barber (1977) using the alternative and perhaps 
more fundamental definition (1.1). 

The layout is as follows: § 2 deals with the spin systems and 0 3 with the boson 
systems. Several concluding remarks are made in § 4. 

2. The XY model 

The X Y  model is defined by the Hamiltonian 

where the spins Si occupy the sites of a (hyper)cubic lattice. We assume that the 
alignment at low temperatures is ferromagnetic in the x y  spin plane; accordingly we 
take Jij > IJij 12 0. At low temperatures we assume a 'helical' state with a twist is set up 
so that 

(Sl") = MO cos (ko . Ri), (Sr) = M O  sin (ko . Ri) ,  (Sf) = 0, (2.2) 

where MO is the magnitude of the spontaneous order and ko is the pitch of the spiral. It 
is convenient to study the system in a rotating reference frame defined by the 
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canonical transformation 
sr’ == S’ 

S9 = -Sl sin (ko . Ri)+Sr cos (ko . Ri) (2.3) 

Sl = S :  cos (ko . Ri)+ Sr sin (ko . R i )  

so that at each site Ri the magnetisation points in the ;-direction. Substitution of the 
transformed variables into X yields X = X o  + Xc given by 

which has new features. The first term (XO) represents an X Y  model with an 
exchange correction, while the second (Xc) represents a ‘current’ term (Rudnick and 
Jasnow 1977). Nonetheless usual spin-wave analysis can be carried out; spin devia- 
tions 

sy = s - urai, 

S +  = S ;  +is: = ( ~ s ) ’ / ~ u , ,  

S ;  =S;- iSf-(2S)  a i ,  1/2 t 

with the a and u t  boson operators can be introduced, and only quadratic terms are 
kept in Xo.  Standard techniques (see, e.g., Kittel 1963, Keffer 1966) can be used to 
bring it to diagonal form. 

The current yields a trilinear term 

where, as usual, 

ak = N-’/’ e i k * R t  

i 

and N is the number of spins. In lowest-order spin-wave theory there is a temptation 
to neglect this term (Xc). Indeed a careful analysis indicates that it yields a term 
O(TZd-’) to Y ( T )  and (for d > 2) is of higher order than the exchange correction noted 
above. It is the specific nature of the Bogoliubov transformation in the long- 
wavelength limit which makes a potential T2d-2  contribution vanish. 

The free energy contribution from X o  follows from standard techniques; evaluat- 
ing the helicity modulus according to (1.3) yields a contribution of the form Y = 
A - B T d + ’  with A and B positive non-universal constants depending on dimen- 
sionality and, for example, on the full Brillouin zone shape. Several additional steps 
are included in appendix 1. Note in particular that the spontaneous magnetisation has 
the form 

N-’C (Sl)= mo(T)= mo(0)-mlTd-’ ,  (2.8) 
i 

where 0 < mo(0) S and m > 0 are non-universal constants. 
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The same sort of analysis can be applied to the Heisenberg model, even though 
this (n = 3 )  model is not expected to exhibit a ‘twisted’ state over a significant time 
scale. As discussed by Fisher et al (1973), it is too easy for an isotropic system with 
n b 3 components to untwist, so that a dynamically stable twisted state is not expected. 
Nonetheless the incremental free energy can be calculated, and one finds for d > 2 as 
T + 0 ,  

Y ( T ) a m o ( T ) = S - m 1 T d ’ ’ .  (2.9) 

3. Bose particle systems 

We consider first the case of the ideal Bose gas to show that the definition ( 1 . 3 )  yields 
results in precise agreement with those of Barber (1977) using the (perhaps more 
fundamental) definition (1.1). The Hamiltonian is written in second quantised form in 
terms of the Bose field operators t,b(x). A twist is induced by making the trans- 
formation $(x) = e-iko.”t,b(x) in complete analogy with (2 .3) .  In terms of the trans- 
formed variables the Hamiltonian takes the form (h = 1) 

where the b are the usual momentum space operators. The chemical potential f i  has 
to be chosen to preserve particle number, but since the transformation leaves the 
particle density unchanged we have f i  + 0 characterising the condensed phase. 

Note that the equilibrium state would be described by a uniform system of 
macroscopic occupation of the ‘mode’ -ko, in agreement with results in the original 
frame of reference. However we are interested in the excess free energy due to the 
imposition of a twisted state. In this language we must consider the effects of the two 
perturbations, 

%’= 1 (kg/2m)b:bk 

the second again having the form 
simple exercise, and one finds 

k 

AF = k;no(T)/2m, 

and 9f‘ = 1 ( k .  ko/m)b:bk, ( 3 . 2 )  
k 

of a current correction. Perturbation theory is a 

(3.3) 
where no(T)  is the condensate density in the equilibrium system. This leads to the 
result ps = (m/h)’Y(T) = mno(T) in precise agreement with the results of Barber 
(1977). Using (1.3) in place of (1.1) yields a far simpler calculation, however. 

The interest here, however, is to apply the approach to a system of interacting 
bosons. We can do this within the Bogoliubov approximation (see, e.g., Landau and 
Lifshitz 1969) for a weakly interacting Bose fluid. The results are expected to be 
correct asymptotically as T + 0. In this case we expect, and indeed find, that p,(T) # 
no(T). 

The Hamiltonian (with h = 1) is taken to be of the usual form, 

where V is the volume of the system. Imposition of a twist as above merely replaces 
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the kinetic energy term by ( k  + ko)’/2m ; for convenience we use the same variables, b 
and bt, for the transformed system. One again must evaluate perturbation corrections 
using (3.2) around the Hamiltonian (3.4). One finds that the excess free energy can be 
written in the form 

(3.5) 

is the appropriate response function. As usual X(A) denotes the Heisenberg operator, 
X ( h ) =  exp(AXo)X exp(-AXo), and (3.4) governs the evolution and the averages in 
(3.6). If one considers only the first term on the right of (3.5) one finds from (1.3) 
Y ( T )  = ( h 2 / m ) n  where n = N /  V is the particle density. This yields a contribution to 
the superfluid density ps = (m/h)2Y = p, equal to the total mass density. In the two- 
fluid picture the second term on the right of (3.5) corresponds to the normal fluid 
density. 

Of course, we cannot evaluate (3.5) exactly as was possible for the ideal Bose gas. 
However, for the weakly interacting case at low temperatures, the Bogoliubov 
approximation can be made. The basic assumption is that at low temperatures the 
condensate fraction is nearly unity; there is some depletion of the ground state, but it 
is treated as small. Under these circumstances an approximate evaluation of (3.5) can 
be made. In the Bogoliubov approximation the Hamiltonian X o  in (3.4) is replaced by 
a bilinear operator XB. Within this approximation the current type perturbation 
commutes with X B  so that much of the complexity of (3.6) is eliminated. The steps are 
quite familiar so we merely sketch the results. 

The Bogoliubov Hamiltonian is 

where the c k  are boson operators, EO is a constant and 

~ ( k ) = [ u ~ k ~ + ( k ~ / 2 m ) ~ ] ” ~ ,  u 2  = n U o / m ,  (3.8) 

with n the total particle density. At small wavenumbers the excitation spectrum is 
linear, with slope U. To evaluate (3.5) and (3.6) we must re-express the particle 
opeators n k  = bibk in terms of the quasi-particle operators c k  and ci. This again is 
straightforward; the operators become A -independent, and averages with respect to 
(3.7) decouple in the usual fashion. At low temperatures only the smal l4  part of the 
spectrum contributes, and one finds for the leading behaviour in d = 3 

AF = ( k ; / 2 m ) [ n  -2.rr2/(45p4u5m)1 (3.9) 
which leads to 

pr= mn - 2 ~ ~ ( k ~ T ) ~ / 4 5 u ’  (3.10) 

in agreement with the phenomenological results of Landau (1941, 1947). (General- 
isations for d > 2 are straightforward; the second term in (3.10) is proportional to 
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Tdc’ . )  Note that the condensate density is given in the Bogoliubov approximation by 

no(T)=  no(O)-nlT* i n d = 3 .  (3.11) 

The results (3.10) and (3.11) have been obtained previously by Kehr (1967, 1969) in a 
formulation specific to Bose particles and strongly influenced by two-fluid model 
considerations. 

4. Summary and final comments 

Fisher et a1 (1973) suggested a method for calculating the helicity modulus (superfluid 
density) based entirely on ‘beyond the bulk’ equilibrium statistical mechanics. To 
apply the approach one has to evaluate free energy densities in the thermodynamic 
limit in the presence of specified sort-ranged ‘wall potentials’. This seems to us to be 
the most fundamental definition proposed, but it is extremely difficult to apply it to 
specific problems. Barber and Fisher (Barber 1977, Barber and Fisher 1973) main- 
tained the spirit of the general definition but calculated the helicity modulus for the 
ideal Bose gas and spherical models by specifying. the boundary conditions on the 
underlying basic variables: $ ( x ,  y, z + L )  = f $ ( x ,  y, t) for the Bose field operators 
and S(R + Li) = S(R)  for the (lattice) spherical model. Anti-periodic boundary 
conditions induce a twist in the order parameter which vanishes in the thermodynamic 
limit. 

Even with this simplification (using boundary conditions instead of wall potentials 
to induce a twist) the approach is difficult to apply to more general interacting systems. 
It is also difficult to incorporate proper boundary conditions into a conventional 
renormalisation group approach. Rudnick and Jasnow (1977) showed that by further 
modifying the definition of the helicity modulus (to (1.3)) a renormalisation group 
calculation could be carried out. Notice that in (1.3) the thermodynamic limit is taken 
first, then the pitch of the twist is reduced to zero. The difference between the 
definitions of Y is quite analogous to different definitions of long-range order. 

This group of short computations was undertaken with two main objectives. The 
first was to show that by modifying the definition of the helicity modulus to that given 
in (1.3)’ the arsenal of reliable approximate methods could be brought to bear on such 
calculations. Indeed the form (1.3) is very close to the two-fluid picture. In the second 
place we demonstrate the generality of the approach and conceptual basis by including 
the calculation for the XY model at low temperatures. As expected the temperature 
dependence agrees with that for the Bose particle system. In particular the tempera- 
ture dependence of the helicity modulus is distinct from that of the square of the order 
parameter. 
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Appendix 1 

Substitution of spin deviations (2.7) into (2.4) and retaining only bilinear terms 
(consistent with usual lowest-order spin-wave analysis) yields 

20 LI c +c AkULUk + f c (BkUkL2-k +Bka:a?t), 
k k 

where 

c = -iNs'jk,, 

Ak = S [ . f k o - J J ;  - i ( . f b + k  + . fb -k ) ]  

Bk = - i S ( 2 J ;  - . f b + k  - . f b - k ) .  

The Bogoliubov transformation yields quasiparticle energies 

E ( k )  = S[.fb- 4 ( - f b + k  + . f b - k ) ]  1/2 (Jb- A J;)'" 

in terms of which one has free energy density F(ko), 

('4.3) 

As usual sums are restricted to the first Brillouin zone, and V = Nad with a the lattice 
spacing. Differentiation with respect to ko yields the helicity modulus according to 
(1.3). The first three terms in (A.4) yield a positive temperature-independent contri- 
bution. This is a non-universal value (corresponding to Y(T  = 0)) which depends, for 
example, on the zone shape and the relative strength of .fk. The final term in (A.4) 
yields (in d = 3 )  a contribution, -BT4,  to the helicity modulus with B positive and 
non-universal. 

From (A.l) and (A.2) with ko = 0 one evaluates the temperature dependence of 
the spontaneous order 

mo(T) = N-' (s:)  = s -N- '  (arai)  (A.5) 
I i 

for the ordinary XY model. The expectation value in (A.5) is evaluated according to 
(A.l) with ko = 0. One finds, as is well known, a depletion from perfect alignment 
even at T = O .  Such depletion is also non-universal. The leading temperature 
dependence is universal and one has the leading terms (d = 3), 

mo(T)=  mo(0) -mlT2 ,  ('4.6) 
where ml is also non-universal. 

One expects that at low temperatures spin-wave interactions yield a higher-order 
temperature dependence to Y(T) as well as to the spontaneous magnetisation. Using, 
for example, the Dyson-Maleev transformation (see, e.g., Silberglitt and Harris 1968) 
to go beyond linear spin-wave theory indicates that this is indeed the case. 
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